8 TEL :03-5286-3204 FAX:03-5286-3204e-mail:[email protected]:http://waseda-sugahara-lab.jp/■代表論文および著書/Representative publications有機-無機ハイブリッド材料Organic-Inorganic Hybrid MaterialsFigure 1 Janus nanosheets.in a liquid-liquid biphasic system.B.S. Waseda University (1983); Dr. Engineering, Waseda University (1988); Post-doctoral Fellow, Massachusetts Institute of Technology (1989-1990); Assistant Professor, Waseda University (1990-1992); Associate Professor, Waseda University (1992-2000); Professor, Waseda University (2000-); Invited Professor, Université de Montpellier II (2007). CerSJ Awards for Academic Achievements in Ceramic Science and Technology, The Ceramic Society of Japan (2012); The Chemical Society of Japan Award for Chemical Education for 2014, The Chemical Society of Japan (2014); JSPM Award for Distinguished Achievements in Research (2018), Japan Society of Powder and Powder Metallurgy; CerSJ Fellow, The Ceramic Society of Japan (2019).16. T. Sugaya, R, Guégan, N. Idota, T. Tsukahara and Y. Sugahara, “Highly Efficient Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent Making Use of Microchannels,” Langmuir, 36, 7252-7258 (2020). 17. A. Kamura, N. ldota and Y. Sugahara, “Nonaqueous Synthesis of Magnetite Nanoparticles via Oxidation of Tetrachloroferrate Anions by Pyridine-N-Oxide,” Solid State Sci., 92, 81-88 (2019).18. R. Suzuki, M. Sudo, M. Hirano, N. Idota, M. Kunitake, T. Nishimi and Y. Sugahara, “Inorganic Janus Nanosheets Bearing Two Types of Covalently Bound Organophosphonate Groups via Regioselective Surface Modification of K4Nb6O17·3H2O”, Chem. Commun., 54, 5756-5759 (2018). 19. S. Takahashi, S. Hotta, A. Watanabe, N. Idota, K. Matsukawa and Y. Sugahara, “Modification of TiO2 Nanoparticles with Oleyl Phosphate via Phase Transfer in the Toluene Water System and Application of Modified Nanoparticles to Cyclo-Olefin-Polymer-Based Organic Inorganic Hybrid Films Exhibiting High Refractive Indices,” ACS Appl. Mater. Interfaces, 9, 1907-1912 (2017).Figure 2 Surface modification of titanium dioxide nanoparticles We have been involved for some time in preparation of organic-inorganic hybrid materials as well as inorganic materials by seamless use of inorganic and organic chemistry. Our recent research activities can be divided into the following categories: 1. Preparation of inorganic-organic hybrid materials via surface modification of inorganic nanomaterials.Inorganic-organic hybrid materials have been prepared using inorganic nanomaterials, typically transition metal oxide nanoparticles and nanosheets. Organic groups are immobilized on the surfaces of inorganic nanomaterials via surface modification with various coupling agents, including phosphorous compounds, such as organophosphonic acids and esters of phosphoric acid, and alcohols. In particular, surface modification using biphasic systems on both bulk and micro scales has been developed. Grafting of polymer chains has also been achieved via atom transfer radical polymerization (ATRP) using organophosphorous compounds bearing ATRP initiator groups and subsequent polymerization. These have been employed as nanofillers for polymer-based hybrids, and the properties of the resulting polymer-based hybrids including optical and mechanical properties have been evaluated. Regioselective surface modification of nanosheets, on the other hand, can provide Janus nanosheets bearing two properties located separately, one each of the two surfaces of individual nanosheets. They can be utilized as a two-dimensional surfactant and a dual-functional material.2. Preparation of organic-inorganic hybrid materials via chemical routes. Hybrid materials have been prepared via several chemical routes. One route utilizes intercalation reactions, insertion of ions and molecules in the interlayer space of layered compounds, to provide two-dimensional hybrid materials. Intercalation chemistry for some layered compounds, such as kaolinite, has been developed. New intercalative grafting reactions have also been produced. Another route involves a sol-gel process, which typically utilizes organophosphorous compounds and metal compounds, for preparing organic-inorganic hybrid materials with such functions as Li-ion conductivity. 3. Preparation of inorganic materials from chemically prepared precursors. Non-oxide ceramic materials have been prepared from inorganic polymers as precursors via pyrolysis, and their development has focused mainly on high-temperature/high-pressure processes for high-pressure phases of nitrides, that can be used as hard materials. In addition, superparamagnetic magnetite nanoparticles have been prepared via decomposition of precursors containing tetrachloroferrate anions. Porous carbon materials have also been prepared from precursors via pyrolysis. Their electrochemical properties have been evaluated for potential applications. 現在、無機化学と有機化学をシームレスに用い、無機ー有機ハイブリッド材料と無機材料の作製を展開している。現在の研究活動は以下の通りである。1.無機ナノ材料の表面修飾による無機ー有機ハイブリッド材料の作製 無機ー有機ハイブリッド材料を遷移金属酸化物ナノシートやナノ粒子などの無機ナノ材料から作製している。有機ホスホン酸やリン酸エステルなどのリン化合物やアルコールなど種々のカップリング剤を用いた表面修飾により、有機基を無機ナノ材料の表面に固定化している。特に、バルクスケールとマイクロスケールの液ー液二相系での表面修飾法を開発している。また、原子移動ラジカル重合(ATRP)法の開始基を表面に固定化し、ポリマー鎖をATRP法で生長させることで、ポリマー鎖の固定化を行っている。これらのナノ材料を、ポリマーハイブリッド材料のナノフィラーとして用いており、得られるハイブリッド材料の光学特性や機械的性質を評価している。一方、位置選択的表面修飾により、ナノシートの2つの面が異なる性質を持つヤヌスナノシートが作製できる。これらのヤヌスナノシートは界面活性剤や2つの機能を有する材料に応用できる。2.化学的合成法による無機ー有機ハイブリッド材料の作製いくつかの化学的合成ルートにより、ハイブリッド材料を合成している。一つのルートでは、層状物質の層間に分子やイオンを導入するインターカレーション反応を利用して二次元ハイブリッド材料を作製しており、カオリナイト等の層状物質のインターカレーション化学を発展させている。加えて新たな層表面修飾技術も生み出している。もう一つのルートはゾルーゲル法を利用しており、例えば有機リン化合物と金属化合物を用い、リチウムイオン伝導性などの性質を有する無機ー有機ハイブリッド材料を作製している。3.化学的に合成された前駆体からの無機材料の作製無機高分子を前駆体とした熱分解により非酸化物セラミックス材料を合成しており、特に高温/高圧プロセスによる、超硬材料である窒化物高圧相の作製を行っている。また、テトラクロロ鉄(III)酸陰イオンを含む前駆体からのマグネタイトナノ粒子の作製も行っている。さらに、前駆体から多孔質炭素材料を作製し、その応用の可能性を検討するために電気化学的性質を調査している。 1. Y. Zhou, Y. Guo, Y. Yamauchi, Y. Sugahara, “Ultrafine CoFe alloy nanoparticles confined in highly ordered mesoporous carbon films as catalysts for the oxygen evolution reaction,” ACS Appl. Nano Mater., 7, 25360-25368 (2024). 2. Y. Guo, Z. Chen, D. Jiang, Y. Li, W. Zhang, K. Kozumi, Y. Kang, Y. Yamauchi, Y. Sugahara, “Evolution of CuCoFe Prussian blue analogues with open nanoframe architectures for enhanced capacitive deionization,” Chem.Eng.J., 495, 153714 (2024). 3. S. Takayanagi, Y. Sugahara, R. Guégan, “Enhanced Electrochemical Performances of Heterostructures Based on the Colloidal Association of Graphene Oxide and Titanium Disulfide Nanosheets,” Langumuir,40,18346-18356 (2024). 4. R. Guégan, X. Cheng, X. Huang, Z. Němečková, M. Kubáňová, J. Zelenka, T. Ruml, F. Grasset, Y. Sugahara, K. Lang and K. Kirakci, “Graphene Oxide Sheets Decorated with Octahedral Molybdenum Cluster Complexes for Enhanced Photoinactivation of Staphylococcus aureus,” Inorg. Chem., 62, 14243-14251 (2023). 5. Y. Guo, Y. Kang, T. Kamibe, B. Jiang, Y. Yamauchi and Y. Sugahara, “Auto-Programmed Construction of an Iron-Incorporated Cobalt-Molybdenum Complex Towards Enhanced Electrocatalytic Water Oxidation,” Chem. Eng. J., 457, 140464 (2023). 6. T. Kamibe, Y. Asakura and Y. Sugahara, “Phase Transfer of Inorganic Nanosheets in a Water/2-Butanone Biphasic System and Lateral Size Fractionation via Stepwise Extractions,” Langmuir, 39, 820-828 (2023). 7. Y. Guo and Y. Sugahara, “Polymer‐Derived Ceramics for Electrocatalytic Energy Conversion Reactions,” Int. J. Appl. Ceram. Technol., 20, 8-23 (2023). 8. M. Kim, R. Xin, J. Earnshaw, J. Tang, J. P. Hill, A. Ashok, A. K. Nanjundan, J. Kim, C. Young, Y. Sugahara, J. Na and Y. Yamauchi, “MOF-Derived Nanoporous Carbons with Diverse Tunable Nanoarchitectures,” Nat. Protoc., 17, 2990-3027 (2022). 9. R. Suzuki, Y. Yamauchi and Y. Sugahara, “Inorganic Material-Based Janus Nanosheets: Asymmetrically Functionalized 2D-Inorganic Nanomaterials,” Dalton Trans., 51, 13145-13156 (2022).10. T. Kamibe, R. Guégan, M. Kunitake, T. Tsukahara, N. Idota and Y. Sugahara, “Preparation of Double-Layered Nanosheets Containing pH-Responsive Polymer Networks in the Interlayers and Their Conversion into Single-Layered Nanosheets Through the Cleavage of Cross-Linking Points,” Dalton Trans., 51, 6264-6274 (2022). 11. R. Suzuki, T. Nagai, E. Onitsuka, N. Idota, M. Kunitake, T. Nishimi and Y. Sugahara, “Preparation of Water-Dispersible Janus Nanosheets from K4Nb6O17·3H2O and Their Behaviour as a Two-Dimensional Surfactant on Air-Water and Water-Toluene Interfaces,” Dalton Trans., 51, 3625-3635 (2022). 12. R. Sato, S. Machida, M. Sohmiya, Y. Sugahara and R. Guégan, “Intercalation of a Cationic Cyanine Dye Assisted by Anionic Surfactants within Mg-Al Layered Double Hydroxide,” ACS Omega, 6, 23837-23845 (2021).13. S. Machida, R. Guégan and Y. Sugahara, “A Novel Approach to Characterization of a Relatively Unstable Intercalation Compound under Ambient Conditions: Revisiting a Kaolinite-Acetone Intercalation Compound,” Dalton Trans., 50, 6290-6296 (2021).14. R. Suzuki, N. Idota, T. Nishimi and Y. Sugahara, “Dual-functional Janus Nanosheets with Cation Exchangeability and Thermo-responsiveness Prepared via Regioselective Modification of K4Nb6O17・3H2O,” Chem. Lett., 49, 1058-1061 (2020). 15. Y. Guo, X. Zhou, J. Tang, S. Tanaka, Y. V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y. Bando and Y. Sugahara, “Multiscale Structural Optimization: Highly Efficient Hollow Iron-Doped Metal Sulfid Heterostructures as Bifunctional Electrocatalysts for Water Splitting,” Nano Energy, 75, 104913 (2020).1983年早稲田大学理工学部応用化学科卒業、1988年早稲田大学大学院博士課程応用化学専攻修了(工学博士)、1987~1990年早稲田大学助手、1989~1990年米国マサチューセッツ工科大学訪問研究員、1990~1992年早稲田大学専任講師、1992~1999年早稲田大学助教授、2000年~早稲田大学教授、2007年仏国モンペリエ第二大学招聘教授、2010年~早稲田大学材料技術研究所研究員、2012年度日本セラミックス協会学術賞、2014年度日本化学会化学教育賞、2018年度粉体粉末冶金協会研究功績賞、2019年度日本セラミックス協会フェロー菅原 義之 Yoshiyuki SUGAHARA
元のページ ../index.html#10