ダイヤモンドNV中心により局所NMR 161978年早稲田大学理工学部電子通信学科卒業、1980年早稲田大学大学院修士課程電気工学専攻修了、1985年早稲田大学院博士課程電気工学専攻修了(工学博士)、1980~1982年㈱日立製作所、1983~1985年早稲田大学助手、1985~1986年早稲田大学奨励研究員、1986~1990年大阪大学助手、1990~1995年早稲田大学助教授、1995年~早稲田大学教授、1995~1996年ドイツ・フンボルト財団研究員、1998~2003年戦略的創造研究事業(CREST)代表者、2007~2011年科学研究費基盤研究(S)代表者、2010年~早稲田大学材料技術研究所研究員、2011~2015年JST先端的低炭素化技術開発事業(ALCA)代表者、2012年~日本学術会議連携会員、2014~2019年科学研究費基盤研究(S)代表者、 2014年~2017年JST研究成果最適展開支援プログラム(A-STEP)産学共同促進ステージ・ハイリスク挑戦タイプ代表者、2022年 Power Diamond Systems社 設立 ダイヤモンドおよびワイドバンドギャップ半導体を利用し、ナノテクノロジーを駆使して、高周波トランジスタ、パワートランジスタ、ナノトランジスタ、バイオセンサ、超伝導デバイスの開発を行っている。1研究室で先端ナノデバイスを、これだけ多角的に扱っているところは少ない。現在注目されているカーボン系であるところも重要である。シリコンを越える低損失パワートランジスタ、数十GHzでの高周波高出力トランジスタ、液体中で動作し、特定化学物質を検出するトランジスタ型バイオセンサ、ダイヤモンド超電導素子が最近の話題である。― 高耐圧、高速トランジスタ:ダイヤモンドの物質中最高の熱伝導率と高い絶縁破壊電界を利用した高耐圧、高温、高周波トランジスタを開発中。1500V以上の耐圧、400℃での動作。ゲート長100nmのトランジスタで、50GHz以上で動作。電気自動車の駆動制御インバータ、航空機用レーダーのパワーアンプ等の応用が期待。― スピンセンサによる超小型NMR:ダイヤモンド中の窒素と空孔からなるN-V中心を利用し、スピンスピン相互作用を利用した局所核磁気共鳴により、ダイヤモンド最表面の微量な分子を観測。表面修飾性に富み、液体中で安定なダイヤモンド表面の特長を生かしている。― カーボンナノチューブ:高密度プラズマから発生する炭素ラジカルで、単層、2層のナノチューブを低温で高密度、しかも1cm近く成長させる技術を世界に先駆けて開発。ナノチューブの電気伝導性と安定性を利用し、ULSIやナノエレクトロニクスでの新しい配線技術を開拓。― 超伝導:ダイヤモンドに高濃度のボロン(ホウ素)を導入、低抵抗の薄膜を形成し、薄膜ダイヤモンドとしては世界初の超伝導を発現。ダイヤモンドジョセフソン接合、SQUID、超伝導FETを開発。超伝導性と半導体性の共存により、新たなデバイスの開発が期待。■代表論文および著書/Representative publications[1] H. Kawarada “Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits,” Journal of Physics D: Applied Physics, 56, 5, 053001/1-27 (Feb. 2023).[2] R. Alhasani, T. Yabe, Y. Iyama, N. Oi, S. Imanishi, Q. N. Nguyen, H. Kawarada. “An Enhanced Two-Dimensional Hole Gas (2DHG) C-H Diamond with Positive Surface Charge Model for Advanced Normally-Off MOSFET Devices”, Scientific Reports, 12, 1, 4203 (Dec. 2022) (DOI: 10.1038/s41598-022-05180-4).[3] A. Morishita, S. Amano, I. Tsuyuzaki, T. Kageura, Y. Takahashi, M. Tachiki, S. Ooi, M. Takano, S. Arisawa, Y. Takano, H. Kawarada, “Crystal analysis of grain boundaries in boron-doped diamond superconducting quantum interference devices operating above liquid helium temperature”, Carbon. 181, 379-388 (Aug. 30, 2021).[4] T. Bi, J. Niu, N. Oi, M. Inaba, T. Sasaki, H, Kawarada, “Application of 2DHG Diamond p-FET in Cascode with Normally-off Operation and Breakdown Voltage of Over 1.7 kV”, IEEE Trans. Electron Devices, 67, 10, 4006-4009, (Oct. 2020).[5] W. Fei, K. Wei, A. Morishita, H.-X. Wang, H. Kawarada, “Local initial heteroepitaxial growth of diamond (111) on Ru (0001)/c-sapphire by antenna-edge-type microwave plasma chemical vapor deposition”, Applied Physics Letters, 117, 112102/1-4 (Sept. 18, 2020).[6] W. Fei, T. Bi, M. Iwataki, S. Imanishi, H. Kawarada, “Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator”, Applied Physics Letters, 116, 212103/1-4, (29 May, 2020).[7] M. Iwataki, N. Oi, K. Horikawa, S. Amano, J. Nishimura,T. Kageura, M. Inaba, A. Hiraiwa, H. Kawarada, “Over 12000 A/cm2 and 3.2 mΩcm2 Miniaturized Vertical-Type Two-Dimensional Hole Gas Diamond MOSFET” IEEE Electron Dev. Lett., 41, 1, 111-114 (Jan. 2020).[8] M. Inaba, T. Ochiai, K. Ohara, R. Kato, T. Maki, T. Ohashi, H. Kawarada, “Correlation between the Carbon Nanotube Growth Rate and Byproducts in Antenna-Type Remote Plasma Chemical Vapor Deposition Observed by Vacuum Ultraviolet Absorption Spectroscopy”, Small, 15, 1901544 (2019).[9] S. Imanishi, K. Horikawa, N. Oi, S. Okubo, T. Kageura, A. Hiraiwa, H. Kawarada, “3.8 W/mm power density for ALD Al2 O3 -based two-dimensional hole gas diamond MOSFET operating at saturation velocity”, IEEE Electron Device Letters, 40 (2), 279-282, (Feb. 2019).[10] S. Kawai, H.Kawarada, et al.“Nitrogen-Terminated Diamond Surface for Nanoscale NMR by Shallow Nitrogen-Vacancy Centers”, 2019 Jan., The Journal of 1978, Bachelor of Engineering, School of Science and Engineering, Waseda University. 1980, Master of Engineering, Graduate School of Science and Engineering, Waseda University. 1980-1982, Semiconductor & Integrated Circuits Division, Hitachi Ltd. 1985, Doctor of Engineering, Graduate School of Science and Engineering, Waseda University. 1986-1990, Assistant Professor, Faculty of Engineering, Osaka University. 1990-1995, Associate Professor, School of Science and Engineering, Waseda University. 1995- present, Professor, School of Science and Engineering, Waseda University. 1995-1996 Research Fellowship, Alexander von Humboldt Foundation. 1998-2003 Team Leader CREST Project (JST) “Fine structured Diamond Electron Devices Formed by Controlling Surface Adsorbates” 1998-2008 Organizer, European Conference on Diamond, Carbon Nanotube, and Related Materials. 2003-2005 Team Leader, Grant-in-Aid for Scientific Research (A), “Development of High Frequency and High Power Transistors by Controlling Diamond Surface Conductivity.” 2007-2011 Team Leader, Grant-in-Aid for Scientific Research (S) “Development of High Power and Millimeter-long Wave Diamond Transistors Using Two Dimensional Hole Gas” 2010- Team Leader Low-Carbon Research Network Japan (Lcnet)” Center for Ultra-Low-Loss Power Diamond Transistor” 2011-2013 Team Leader, Grant-in-Aid for Scientific Research (A), “High Sensitivity Protein Chip by Aptamer Immobilized Diamond Surface.” 2011-2015, Team Leader, Advanced Low Carbon Technology Research & Development Program (ALCA), “Basic Technologies For Green Inverter Using Large Diameter Diamond Substrates.” 2014-2019 Team Leader, Grant-in-Aid for Scientific Research (S) “Electron Spin Control of Diamond by Surface Carrier and its Application to Nuclear Spin Detection of Bio-Molecules”Physical Chemistry C, 123 (6), 3594-3604. (Jan. 2019).[11] N. Oi, M. Inaba, S. Okubo, I. Tsuyuzaki, T. Kageura, S. Onoda, A. Hiraiwa H.Kawarada “Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors”, Scientific Reports. 8, 10660/1-10 (2018).[12] H. Kawarada,“High voltage p-channel MOSFETs using two-dimensional hole gas”, in Power Electronics Device Applications of Diamond Semiconductors, Eds. S. Koizumi, H. Umezawa, J. Pernot, M. Suzuki (Woodhead Publishing, June 2018), p347-359. (ISBN: 978-0-08-102183-5).[13] Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata, D. Matsumura, Y. Hayashi, M. Syamsul, M. Inaba, A. Hiraiwa and H. Kawarada, “Normally-off C-H Diamond MOSFETs with Partial C-O Channel Achieving 2-kV Breakdown Voltage”, IEEE Electron Device Lett., 38, 3, 363-366 (2017).[14] H. Kawarada, T. Yamada, Dechen Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, A. Hiraiwa“Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications”, Scientific Reports. 7, 42368/1-8, (2017).180907 材研パンフ用川原田.docx [15] H. Kawarada, H. Tsuboi, T. Naruo, T. Yamada, D. Xu, A. Daicho, T. Saito, and A. Hiraiwa,“C-H surface diamond field effect transistors for high temperature (400℃) and high voltage (500V) operation”, Appl. Phys. Lett., 105, (1), 013510/1-4 (2014).Carbon nanoelectronics Due to their extreme properties, diamond and carbon nanotubes are anticipated to be applied in ultimate, highly integrated semiconductor devices for high power, high temperature, and high frequency operation. In diamond, we focused on the 2-dimensional hole gas (2DHG) layer that appears on a hydrogen-terminated diamond surface and developed surface channel field effect transistors (FETs). This type of FET is usable in high-power and high-frequency devices, in-plane-gate FETs for single hole transistors, and biosensors in electrolyte solution. We are also investigating carbon nanotubes for multi-layer interconnection for-next generation ULSIs and ultimate electrodes for SiC power transistors.Research subjects Our research is focused on nanoelectronics from RF & power devices, superconductor devices, biosensors, bioelectronics and ULSI fabrication processes based on nanocarbon electronics. Our work covers the following areas:—Power and high temperature operation of diamond MOSFETs using 2DHG. Blocking voltage > 1500 V. Constant operation at 400 ℃ . IEEE IEDM 2014.11.02 (2014), Appl. Phys. Lett. 105 013516 (2014). Sci. Rep. 7. 42368 (2017), Sci. Rep. 8. 10660 (2018), IEEE TED 68, 7, 3490 (2021)—Microwave devices and their characteristics using diamond MOSFETs. fT 45 GHz, RF power density of 3.8 Wmm-1 are obtained with a power handling capability exceeding those of Si or GaAs transistors. The power density is the highest in diamond, IEEE EDL, 40, 279, (2019), IEEE TED 68, 3942 (2021)—Diamond N-V center for nanoscale NMR. “Appl. Phys. Express, 10, 5, 055503/1-4, (2017). The Journal of Physical Chemistry C, 123, 3594. (2019), Carbon, 180,127(2021)—Carbon nanotubes grown at low temperature compatible with Si ULSI fabrication. With densely packed & vertically oriented single or double wall carbon nanotubes for interconnection and supercapacitors. Carbon 57, 79 (2013), 57, 401 (2013). Appl. Phys. Lett. 106 213503 (2015), 106 123501 (2015). Small, 15, 1901544 (2019)—Diamond superconductivity using highly B-doped (1021cm-3) diamond. Tc at ~10 K enables cryoelectronic applications. Phys. Rev. B 85, 184516 (2012), Appl. Phys. Lett. 106 052601 (2015). Carbon, 181, 379 (2021)縦型ダイヤモンドパワートランジスタ縦型ダイヤモンドパワートランジスタ 180907 材研パンフ用川原田.docx 縦型ダイヤモンドパワートランジスタ ダイヤモンドNV中心により局所NMRナノ・パワーエレクトロニクスNano and Power Electronics川原田 洋 Hiroshi KAWARADATEL :03-5286-3391 FAX:03-5286-3391e-mail:[email protected]:http://www.kawarada-lab.com/
元のページ ../index.html#18